

Reg. No.: .....

Name: .....

III Semester B.Sc. Degree CBCSS (OBE) Reg./Sup./Imp.
Examination, November 2021
(2019-2020 Admission)
COMPLEMENTARY ELECTIVE COURSE IN MATHEMATICS
3C03 MAT-CH: Mathematics for Chemistry – III

Time: 3 Hours Max. Marks: 40

Answer any four questions. Each question carries 1 mark.

- 1. Solve  $y' + y \sin x = e^{\cos x}$ .
- 2. Verify that  $y = 1 + \cos x$ ,  $y = 1 + \sin x$  are solutions of non-homogeneous linear ODE y'' + y = 1. What about their sum?
- 3. Find the inverse Laplace transform of  $\frac{5s-1}{s^2-25}$ .
- 4. Define the fundamental period of a function. What is the fundamental period of the function  $\cos \pi x$ ?
- 5. Write the formula for finding the Fourier series of a function and its Fourier (4×1=4)

Answer any seven questions. Each question carries 2 marks.

- 6. Solve  $cos(x + y) dx + [3y^2 + 2y + cos(x + y)] dy = 0$ .
- 7. If  $y_1$  and  $y_2$  are solutions of the homogeneous equation y' + p(x) y = 0, then show that  $y_1 + y_2$  and  $ay_1$ , a is a constant, are also solutions of this equation.

and a location and the real of

- 8. Find the solution of ODE  $y' = (x + 1) e^{-x}y^2$ .
- 9. Solve the initial value problem y'' + y' 2y = 0, y(0) = 4, y'(0) = -5.



- 10. Solve  $(x^2D^2 4xD + 6) y = 0$ .
- 11. Find the inverse Laplace transform of  $\ln \frac{s+a}{s-a}$ .
- 12. Find the Laplace transform of te-kt sint.
- 13. Solve the initial value problem using Laplace transforms y'' y = t, y(0) = 1, y'(0) = 1.
- 14. Find the Fourier series expansion of f(x) = x,  $-\pi < x < \pi$ .
- 15. Write the Fourier cosine series expression of

$$f(x) = \cos \pi x, \frac{-1}{2} < x < \frac{1}{2}, p = 1.$$
 (7×2=

Answer any four questions. Each question carries 3 marks.

- 16. Find the integrating factor of the differential equation  $(x^2 + y^2) dx 2xydy = 0$  and then solve it.
- 17. Find the general solution of  $y' + y = \frac{-x}{y}$ .
- 18. By method of undetermined coefficients solve  $y'' + y = 0.001x^2$ .
- 19. Let  $y_1 = 1$ ,  $y_2 = e^{-2x}$ . Show that  $y_1$  and  $y_2$  are linearly independent. Find a second order differential equation with  $y_1$  and  $y_2$  as solutions and then solve it.
- 20. Solve the Volterra integral equation  $y(t) \int_{0}^{t} (1+\tau) \dot{y}(t-\tau) d\tau = 1 \sinh t$
- 21. Solve the system using Laplace transform

$$y'_1 + y_2 = 0$$
,  $y_1 + y'_2 = 2 \cos t$ ,  $y_1(0) = 1$ ,  $y_2(0) = 0$ .

22. Find the Fourier series of the function

$$f(x) = x + \pi, -\pi < x < \pi, f(x + 2\pi) = f(x).$$



Answer any two questions. Each question carries 5 marks.

23. Solve the following differential equations.

a) 
$$y' = (x + y - 2)^2$$
,  $y(0) = 2$ 

b) 
$$\sec^2 y \frac{dy}{dx} + 2x \tan y = 0$$
.

- 24. Using method of variation of parameters solve  $y'' + 4y' + 3y = 65 \cos 2x$ .
- 25. Write the following function using unit step functions and find its transform.

$$f(t) = \begin{cases} 2 & \text{if } 0 < t < 1 \\ \frac{1}{2}t^2 & \text{if } 1 < t < \frac{\pi}{2} \\ \cos t & \text{if } t > \frac{\pi}{2} \end{cases}$$

26. Find the Fourier series expansion of

$$f(x) = \begin{cases} -k & \text{if } -2 < x < 0 \\ k & \text{if } 0 < x < 2 \end{cases}.$$
 (2x5=10)